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Abstract

Background: Exercise training has been associated with greater cerebral blood flow (CBF) in 

cognitively normal older adults (CN). Alterations in CBF, including compensatory perfusion in the 

prefrontal cortex, may facilitate changes to the brain’s neural infrastructure.

Objective: To examine the effects of a 12-week aerobic exercise intervention on resting CBF and 

cognition in CN and those with mild cognitive impairment (MCI). We hypothesized individuals 

with MCI (vs. CN) would exhibit greater whole brain CBF at baseline and that exercise would 

mitigate these differences. We also expected CBF changes to parallel cognitive improvements.

Methods: Before and after a 12-week exercise intervention, 18 CN and 17 MCI participants 

(aged 61–88) underwent aerobic fitness testing, neuropsychological assessment, and an MRI scan. 

Perfusion-weighted images were collected using a GE 3T MR system. Repeated measures 

analyses of covariance were used to test within- and between-group differences over time, 

followed by post-hoc analyses to examine links between CBF changes and cognitive improvement.

Results: At baseline, individuals with MCI (vs. CN) exhibited significantly elevated perfusion in 

the left insula. Twelve weeks of aerobic exercise reversed this discrepancy. Additionally, exercise 

improved working memory (measured by the Rey Auditory Verbal Learning Test) and verbal 

fluency (measured by the Controlled Oral Word Association Test) and differentially altered CBF 

depending on cognitive status. Among those with MCI, decreased CBF in the left insula and 

anterior cingulate cortex was associated with improved verbal fluency.
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Conclusions: Exercise training alters CBF and improves cognitive performance in older adults 

with and without cognitive impairment. Future studies must evaluate the mediating effects of CBF 

on the association between exercise training and cognition.

Keywords

MRI; Exercise; Aging; Cerebral Blood Flow; Mild Cognitive Impairment; Neuroimaging

INTRODUCTION

Mild cognitive impairment (MCI), a condition involving subtle, yet noticeable, deficits in 

memory and thinking abilities, affects 15% to 20% of older Americans[1–3] and precedes 

the onset of dementia. Although the cause of MCI remains uncertain, emerging evidence 

suggests that vascular pathology and perfusion abnormalities play central roles in the 

pathophysiology of Alzheimer’s disease (AD)[4–6]. Vascular risk factors such as 

hypertension, hypercholesterolemia, and diabetes often occur early in AD progression, 

damaging the neurovascular unit and disrupting oxygen delivery/exchange[5,7,8]. Altered 

perfusion rates and hypoxemia facilitate the aggregation of neurotoxic substances such as 

amyloid-β (Aβ) and tau-containing neurofibrillary tangles (NFT)[9,10], further promoting 

vascular inflammation and endothelial decay[11].

Despite consistent evidence of hypoperfusion among individuals with dementia[12], cerebral 

perfusion in those at increased risk of AD is not reliably diminished[13–15]. In fact, several 

studies have found that APOE ε4 carriers[16,17] and those with MCI[13,15] often display 

augmented cerebral blood flow (CBF) in the temporal, prefrontal, and insular 

cortices[16,18]. While hypoperfusion is a characteristic feature of advanced AD, 

hyperperfusion in MCI is hypothesized to reflect a compensatory response by the 

neurovascular system to support compromised neural networks in the face of 

neurodegenerative disease[19,20]. Currently, however, no treatments strategies are known to 

reduce hyperperfusion in older adults diagnosed with MCI.

Exercise training induces physiological adaptations that enhance aerobic fitness and vascular 

health[21,22]. Chronic exercise not only mitigates cardiovascular and metabolic disease[23–

26], but likely enhances memory performance[27] and executive control[28] through 

improved cerebrovascular function[29–31]. Animal studies have revealed that chronic 

exercise upregulates various neurovascular growth factors[32], which stimulate 

angiogenesis[31] and enhance cognitive performance[31,33], thus providing a potential 

mechanistic pathway by which these adaptations occur.

A small number of studies have demonstrated that the cerebral benefits of exercise are not 

limited to CN, but extend to those with MCI[34–39]. However, the effects of exercise 

training on CBF in this high-risk population remain unclear. Therefore, the aim of the 

current study was to measure resting CBF before and after 12 weeks of aerobic exercise 

training in both CN and those with MCI, and to assess the relationship between CBF 

changes and changes in cognitive performance. We hypothesized that individuals with MCI 

(vs. CN) would exhibit greater whole brain CBF at baseline and that exercise would mitigate 
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these differences. Additionally, we expected exercise-induced CBF alterations to parallel 

improved cognitive performance.

MATERIALS AND METHODS

Participants

Thirty-five community-dwelling older adults (aged 61–88) were enrolled in this exercise 

intervention. Recruitment methods included study fliers, newspaper advertisements, 

physician referrals, and in-person informational sessions at local retirement communities 

and recreation centers. To determine preliminary eligibility, participants underwent a 

structured telephone interview to identify preclusive health conditions and MRI 

contraindications. Qualified participants provided written informed consent, obtained 

physician’s approval for moderate- intensity exercise, and underwent a neurological 

assessment to establish definitive eligibility. Prior to commencing the exercise intervention, 

participants were familiarized with the scanning procedures at the neuroimaging center. This 

study was approved by the Institutional Review Board of the Medical College of Wisconsin 

in accordance with the Helsinki Declaration.

Eligibly Criteria

For a complete list of exclusionary criteria and prohibitive medication, see our previous 

study[35]. Briefly, study volunteers were excluded if they reported or presented signs of the 

following: neurological disorders including, Parkinson’s disease, Huntington’s disease, 

multiple sclerosis, cerebral palsy, epilepsy, carotid artery disease, transient ischemic attack 

(> 4 on the modified Hachinski Ischemic Scale[40]), brain tumor, or head trauma with a loss 

of consciousness (> 30 minutes); psychiatric disorders, including any untreated Axis I 

diagnosis (as defined by the DSM-IV[41]), a substance abuse disorder, or severe depressive 

symptoms (> 12 on the Geriatric Depression Scale[42]); and cardiometabolic or pulmonary 

disorders including cardiovascular disease, untreated hypertension, chronic obstructive 

pulmonary disease, and asthma. Eligible participants reported low physical activity (< 3 

days/week during the previous 6 months), were right-handed (≤ 50 on the Edinburgh 

Handedness Inventory[43]), could independently complete tasks of daily living (IADLs; 

measured by the Lawton and Brody Self- Maintaining and Instrumental Activities of Daily 

Living Scale[44]), and presented no absolute contraindications to exercise stress testing or 

MRI.

Over the course of the recruitment process, a total of 407 individuals responded to in-person 

solicitations or study advertisements. Of these, 92 eligible individuals signed informed 

consent and underwent neurological examination. Of these, six did not meet inclusion/

exclusion criteria and another 18 declined to continue beyond the initial screening. Of the 68 

remaining, 29 were withdrawn from the study before commencing the exercise intervention, 

for various reasons: nine due to discomfort in the MRI environment, five due to excluded 

medications, and 15 due to unwillingness to commence the intervention. The remaining 39 

participants started the exercise program. Of these, four were withdrawn because of a later 

diagnosis of exclusionary medical condition, leaving a final sample of 35 participants (17 

MCI and 18 CN)[35].
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Cognitive Status and Neuropsychological Testing

Cognitive status (normal or MCI) was determined using the Core Clinical Criteria for the 

diagnosis of MCI as set forth by the National Institute on Aging- Alzheimer’s Association 

workgroup on diagnostic criteria for the symptomatic predementia stages of AD[2]. Namely, 

these criteria include (1) subjective concern related to changes in cognition, (2) objective 

impairment in at least one cognitive domain, (3) preserved functional independence, and (4) 

absence of dementia (exhibited by intact social and occupational abilities)[2]. To 

appropriately make this determination and ultimately stratify the sample, each participant 

was evaluated by a team of clinical investigators (including KAN). Participants with 

probable MCI were further assessed by a neurologist to exclude other possible causes of 

cognitive decline.

A comprehensive battery of neuropsychological tests was used to assess performance across 

the cognitive domains before and immediately after the 12- week exercise intervention. The 

battery consisted of seven tests to evaluate several aspects of cognition, including: (1) Mattis 

Dementia Rating Scale-2[45] (DRS-2; global cognitive function and risk of dementia), (2) 

Mini-Mental State Exam[46] (MMSE; global cognitive function and risk of dementia), (3) 

Symbol Digit Modalities Test[47] (SDMT; attention and processing speed), (4) Controlled 

Oral Word Association Test[48] (COWAT; verbal fluency), (5) Semantic Fluency Test[49] 

(Animals; semantic fluency), (6) Logical Memory and Letter-Number Sequencing subtests 

of the Wechsler Memory Scale-III[50] (WMS-III; working memory, delayed memory, and 

attention), (7) Rey Auditory Verbal Learning Test[51] (RAVLT; verbal working memory and 

delayed-recall). Alternate test forms were used for each test at each time point, where 

possible, including for the RAVLT and DRS-2. An extensive description of each assessment 

(including test materials and procedures) can be found in our previous paper[35].

V̇O2peak Testing

V̇O2peak, which is the peak rate of oxygen consumption during exercise and an established 

metric of aerobic fitness, was measured before and immediately after the 12-week exercise 

intervention using a submaximal graded exercise test. Preceding each test, the indirect 

calorimeter (ParvoMedics, Sandy,UT) was calibrated against standard O2 and CO2 

concentrations. Resting heart rate was collected continuously for 10 min prior to the start of 

exercise (in supine position), which was then used to compute heart rate reserve (HRR = 220 

- age - resting heart rate)[52]. Exercise tests were performed on a General Electric (GE) 

motorized treadmill system (Milwaukee, WI) and followed a modified Balke-Ware 

protocol[53] (initial exercise intensity = 2.0 mi/h (3.2 km/h) at 0° grade, with intensity 

increases of 1°/min), in accordance with the American College of Sports Medicine 

Guidelines[54]. All testing sessions began and ended with 3–5 min of level walking at 1–2 

mi/h (1.6–3.2 km/h). Throughout the test, several variables were collected including expired 

air, (every 15 sec), ratings of perceived exertion (every min), and measures of heart rate 

(HR) and blood pressure (every 2 min). To ensure participant safety, testing was terminated 

if any absolute exercise contraindications were observed (e.g., diastolic blood pressure > 110 

mmHg) or if the participant requested to stop the test. Successful fitness assessments were 

complete when the participant reached 85% of their HRR. V̇O2peak (measured as ml/kg/min 
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at standard temperature, pressure, and dry; STPD) was the highest V̇O2 value achieved 

during the exercise test.

Exercise Intervention

The 12-week exercise intervention included four 30-min sessions of moderate-intensity 

treadmill walking per week. Exercise sessions occurred at local recreation centers, were 

conducted independently or in groups of two, and were always supervised by a certified 

exercise trainer. During the first four weeks, exercise intensity progressively increased, with 

all participants ultimately reaching target intensity (50–60% of HRR) by the fifth week. This 

target intensity was maintained for the remainder of the exercise training program (8 weeks). 

Participants engaged in 10 min of light activity (e.g., stretching and walking) as a warm-up 

and cool-down; and during the training sessions, HR (using a Polar® monitor) and RPE 

(using the Borg RPE 6–20 Scale[55]) were measured to track training intensity and 

accommodation. Treadmill speed and grade were tailored to match baseline fitness levels 

and were progressively modified, by session, to promote increases in aerobic fitness.

MRI Acquisition

During the MRI scan, participants were instructed to remain still, keep their eyes open, and 

focus their gaze towards a fixation cross projected directly in front of them. All MRI data 

were acquired using a GE 3.0 Tesla MR system (Waukesha, WI, USA) with a quad/split 

head coil for radio frequency transmission and reception. A high-resolution T1-weighted 

anatomical brain image was collected using a 3D Spoiled Gradient Recalled at steady state 

(SPGR) protocol for coregistration and included the following sequence parameters: matrix 

= 256, field-of-view (FOV) = 240 mm, voxel size = 0.94 × 0.94 × 1.00 mm, number of 

excitations = 1, slice thickness = 1 mm, repetition time (TR) = 9.6 ms, echo time (TE) = 3.9 

ms, inversion time (TI) = 450 ms, flip angle = 90°, and sequence duration = 6 min.

Perfusion-weighted images were collected using a multi-slice pseudo- continuous arterial 

spin labeling (PCASL) protocol for perfusion quantification and included the following 

sequence parameters: matrix = 64, FOV = 240 mm,voxel size = 3.75 × 3.75 × 5.00 mm, 

number of excitations = 1, slices = 12 (axial, ascending order), slice thickness = 5 mm, gap 

between slices = 1 mm, single slice acquisition time = 33.75 ms, label duration (bolus) = 

1480 ms, post-label delay (PLD) = 1575–1980 ms, TR = 4000 ms, volumes = 90, number of 

label/control pairs = 45, flip angle = 90°, RF blocks = 80, block duration = 18.5 ms, and 

sequence duration = 6 min.

MRI Data Processing

Preprocessing: AFNI’s Dimon program was used to convert the DICOM image files into 

3D space[56]. Once reconstructed, the first four volumes of the image time-series were 

discarded to avoid magnetization disequilibrium. The truncated time series were realigned to 

reduce the spurious effects of head motion (using AFNI’s 3dvolreg), and runs with excessive 

motion (> 2.5 mm) were excluded from further analysis. The motion-corrected 

undifferenced PCASL image was coregistered with the T1-weighted anatomy (using AFNI’s 

align_epi_anat.py) and visually inspected for proper alignment. A proton density (PD) 

image for perfusion calibration was created by extracting the first 10 control volumes from 
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the coregistered time series[57], and was spatially smoothed (6 mm Gaussian kernel) to 

enhance SNR and improve perfusion calibration[58].

Segmentation: Partial volume estimates, which are proportional estimates of gray matter 

(GM) and white matter (WM) per voxel, were derived using the tissue sensitivity and 

probability distributions of the coregistered T1-weighted anatomy utilizing FSL’s Fully 

Automated Segmentation Tool (FAST; FMRIB Software Library version 5.0.9, Oxford, UK)

[59]. These high-resolution maps served several key purposes including partial volume 

correction, nuisance regression, and tissue-specific perfusion quantification. Additionally, 

cortical parcellation maps were created using FreeSurfer’s (Version 5.3.0) automated 

processing stream to anatomically isolate regional CBF.

Perfusion Quantification: FSL’s Bayesian Inference for Arterial Spin Labeling (BASIL, 

FMRIB Software Library version 5.0.9, Oxford, UK) was used for perfusion 

quantification[57,60]. A perfusion image was generated from the coregistered PCASL time 

series using pairwise subtraction (control-labeled volumes) and adjusted for slice-time delay. 

A T1 correction was used on the PD image to adjust for potential errors in the blood-brain 

partition coefficient (TR < 5000 ms)[58]. Once corrected, a ventricular reference mask from 

the T1- weighted anatomy was used to isolate and compute the magnetization equilibrium 

(M0) of brain tissue, which was further used to approximate the M0 of arterial blood (M0a).

Buxton’s General Model for Kinetic Inversion was implemented to estimate absolute 

cerebral perfusion (ml/100g/min) and included the following parameters: ΔM (proportional 

magnetization change represented by the perfusion image), T1 blood (longitudinal relaxation 

time of blood = 1650 ms), T1 tissue (longitudinal relaxation time of tissue = 1300 ms), 𝛼 
(labeling efficiency = 0.85), M0a (magnetization equilibrium of arterial blood), BAT (bolus 

arrival time: GM = 1300 ms, WM = 1000 ms), Bolus (label duration = 1480 ms), PLD (post 

label delay =1575–1980 ms), and λ (blood-brain partition coefficient of gray matter (GM) = 

0.98 ml/g and white matter (WM) = 0.82 ml/g)[57,60]. The rendered CBF map was 

adaptively smoothed using a spatial regularization technique and partial volume corrected to 

improve the accuracy of CBF estimation[59,61]. Relative CBF was derived by dividing 

absolute CBF by the GM mean on a per subject basis.

Normalization: To preserve the heterogeneity of the individual brain anatomy, the T1-

weighted image and anatomical followers (FAST-rendered gray matter segmentations) were 

warped to MNI space using AFNI’s non-linear transformation[62]. The resulting 

transformation matrices were then used to normalize and isotropically resample (2 mm3) the 

corrected CBF maps to standard space.

Group-Level Processing: Sufficient perfusion data were available for 32 participants at 

baseline (15 MCI and 17 CN) and 31 participants post-intervention (15 MCI and 16 CN). 

Before normalizing to MNI space, individual GM and WM segmentations from each 

participant were used to isolate and extract mean CBF from the PVC maps. Once 

normalized, GM segmentations (from each participant at both time points) were combined to 

create a group-level mask, within which the voxel-wise analysis was restricted. Voxels 
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containing signal from less than 95% of the overall dataset were deleted from the group 

mask and not included in the analysis (see Figure 1).

Statistical Analyses

Relative CBF was the primary neuroimaging outcome, because of its high resistance to 

physiological noise and enhanced sensitivity to regional variation[29,63]. Using the relative 

maps, a voxel-wise analysis, without additional covariates, was performed using AFNI’s 

3dLME to identify within- and between-group differences over time (see Supplementary 

Table 2 for regional absolute CBF values and Supplementary Figure 1 for an example 

perfusion map from the current study). We chose to use 3dLME for its capacity to execute 

repeated measures analyses while accommodating missing data[64]. Given effective 

smoothness (ACF estimates) and first-order nearest neighbor clustering, AFNI’s 3dClustSim 

program was used to control for multiple comparisons and reduce the risk of Type-I 

error[65]. A family-wise error (FWE) corrected significance threshold was set at p < 0.05 

(voxel-level p < 0.05, cluster- level 𝛼 = 0.05), which maintained clusters ≥ 428 contiguous 

voxels (3424 mm3). Mean CBF values were extracted from these significant clusters from 

each participant at both time points. Between-group differences in demographic 

characteristics were assessed using independent samples t-tests (or Wilcoxon rank sum tests) 

and chi-squared tests for continuous variables and categorical variables, respectively. 

Adjusting for age and education, multiple linear regression and repeated measures analysis 

of covariance were utilized to evaluate both baseline CBF differences and changes over time 

using Stata software (version 15; StatCorp, College Station, TX). The same statistical 

methods were used to test for exercise-induced changes in mean GM CBF, 

neuropsychological performance, aerobic fitness, and blood pressure. For post-hoc 
correlation analyses, significant clusters (from the voxel-wise analysis) and representative 

cortical parcellations (from FreeSurfer) were used to isolate regional CBF at both time 

points. Residualized CBF, RAVLT Trial 1, and COWAT performance were independently 

derived from linear regression models predicting post-intervention from baseline values. The 

residualized change scores were used to minimize both practice effects and regression to the 

mean[66,67]. Adjusting for age and education, partial correlation analyses were utilized to 

evaluate the correlation between CBF changes and cognitive improvements[68]. Unless 

otherwise stated, significance was determined using a two-tailed alpha < 0.05.

RESULTS

Demographic Characteristics and Aerobic Fitness

At baseline, those diagnosed with MCI and CN did not significantly differ by age, sex, 

education, APOE genotype, functional abilities, depression score (missing data n = 3 MCI, 1 

CN), V̇O2peak (missing data n = 1 MCI), or systolic/diastolic blood pressure (missing data n 

= 1 MCI, 1 CN) (Table 1). Overall, adherence to the exercise intervention was high (~ 96%) 

and throughout the training program, neither exercise adherence nor intensity (measured by 

HR and RPE) significantly differed by group (see Smith, 2013).
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Neuropsychological Performance

Aside from RAVLT Trial 1, individuals with MCI (vs. CN) performed significantly worse on 

all neuropsychological assessments at baseline (see Smith et al., 2013). After the exercise 

intervention, both groups exhibited significantly improved RAVLT Trial 1, F(1, 30) = 7.6, p 
= 0.010 and COWAT performance, F(1, 30) = 5.6, p = 0.024, and V̇O2peak, F(1, 27) = 7.6, p 
= 0.010. There were no significant group-by-time interactions or main effects of time for the 

RAVLT Trials 1–5, RAVLT Immediate Recall, RAVLT Delayed Recall, Clock Drawing, 

Animal Fluency, or systolic/diastolic blood pressure (missing data n = 1 MCI, 2 CN) (Table 

2).

Voxel-Wise CBF Analyses

At baseline, relative CBF within the left insula (L insula) was significantly greater among 

those with MCI (β = 0.7, p = 0.008), but after the exercise intervention no such difference 

was present (Figure 2). There were no significant group-by-time interactions or main effects 

of time. However, post-hoc analyses revealed that chronic exercise engendered different 

responses within each group. After adjustment for age and education, exercise training 

decreased CBF among those with MCI in the L ACC, F(1, 14) = 6.8, p = 0.021 and the R 

IFG,F(1, 14) = 5.5, p = 0.034, and increased CBF in the R ACC among CN, F(1, 15) = 9.6, p 
= 0.007 (Figure 3 and Supplementary Table 1). Note, the brain regions mentioned above 

reflect the location of peak perfusion differences or changes; figure legends contain a 

complete list of brain regions overlapped by significant clusters (Figures 2 and 3).

Associations of within-group changes in CBF and Cognitive Performance

Mean CBF values were extracted from the left and right anterior cingulate cortex (ACC) for 

MCI and CN, respectively, and the right inferior frontal gyrus (IFG) and left insula for those 

with MCI. After adjustment for age and education, results demonstrated partial correlations 

between improved COWAT performance and decreased CBF within the L insula (as defined 

by the voxel- wise analysis; r = −0.79, p = 0.001) and L ACC (as defined by cortical 

parcellation; r = −0.82, p < 0.001) (Figure 4). No additional correlations were identified 

between changes in regional perfusion and improvements in cognitive performance for 

either group and there were no significant associations between systolic/diastolic blood 

pressure changes and within-group CBF changes over time.

DISCUSSION

Key Findings

Although no significant interactions were found at the p < 0.05 level, 12 weeks of exercise 

training significantly improved aerobic fitness (V ̇O2peak increased approximately 8%), and 

enhanced verbal fluency (measured by the COWAT) and memory performance (measured by 

the RAVLT Trial 1). Additionally, post-hoc analyses revealed that exercise training was 

linked to directionally distinct, within-group CBF changes over time.

post-hoc tests were also used to determine whether CBF changes were coupled with 

improved cognitive performance. In support of our hypotheses, we found that those with 

MCI (vs. CN) exhibited more diffuse exercise-induced changes in perfusion within the 
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prefrontal cortex (7056 mm3 vs. 3624 mm3), which were directionally dependent on 

cognitive status. Specifically, among those with MCI, exercise training decreased CBF in the 

L ACC and R IFG, while in CN, exercise increased CBF in the R ACC. Moreover, among 

those with MCI, decreased CBF in the L insula and L ACC was correlated with improved 

COWAT performance. No additional associations were identified between perfusion changes 

(within the R IFG or R ACC) and improvements in cognitive performance for MCI or CN. 

No between-group differences or within-group changes in whole-brain CBF were observed.

In the present study, individuals with MCI demonstrated significantly elevated CBF in the L 

insula at baseline, but not immediately after 12 weeks of aerobic exercise. The insula is a 

unique and complex brain region involved in numerous functions (e.g., autonomic 

regulation, motor control, higher order cognitive-emotional processing) and is believed to be 

a primary component of the salience network[69–71]. Like the temporal and prefrontal 

cortices, the insula appears to be affected early along the AD continuum, with previous 

investigations demonstrating insular atrophy and disrupted intrinsic connectivity among 

individuals with MCI[72,73]. Our findings align with prior reports of insular hyperperfusion 

in individuals at increased risk of AD[16], but also suggest exercise training may help 

normalize a struggling and perhaps diseased neurovascular system. While few studies have 

used neuroimaging to examine the effects of exercise in MCI, investigations pursuing this 

objective have revealed promising results. In 2015, ten Brinke et al. examined the effects of 

a 6- month exercise intervention (participants were randomized to either: aerobic exercise, 

resistance training, or balance/toning exercise) in 86 older women with MCI using structural 

MRI. After 6 months of exercise, those who engaged in aerobic exercise had preserved 

hippocampal volume compared to the balance/toning group[36]. In 2015, Doi et al. used tri-

axial accelerometry and structural MRI to identify associations between physical activity 

(PA) and white matter lesions/brain atrophy in 323 individuals with MCI. Findings revealed 

lower levels of PA were linked to more severe white matter lesions and greater levels of 

moderate-to-vigorous PA were related to less whole brain atrophy[37]. Finally, using the 

same sample analyzed in the current study, our group has shown 12 weeks of exercise 

training in those with MCI leads to improvements in neural efficiency[35], functional 

connectivity[74], and cortical thickness[34].

Theories and Potential Mechanisms

Cerebrovascular disease and AD share many of the same risk factors (e.g., hypertension, 

hypercholesterolemia, and diabetes) and most AD cases present some signs of vascular 

pathology[8,75,76]. Stroke and silent infarcts, including transient ischemic attacks and 

hypoxic events (e.g., during sleep disordered breathing) increase the risk of AD[77–79]. 

“The Two-Hit Vascular Hypothesis for Alzheimer’s Disease” postulates that vascular risk 

factors compromise the blood-brain barrier and reduce CBF (i.e., the first “hit”), which leads 

to a cascade of neurotoxic events[7,8]. According to this theory, microvascular damage 

increases arterial transit time (ATT) heterogeneity and concomitantly augments Ab 

deposition (i.e., the second “hit”). In cyclical fashion, increased Ab further promotes 

hypoperfusion and neuronal dysfunction, which stimulates the formation of NFT, ultimately 

accelerating neurodegenerative disease[7,8].
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Although we did not measure ATT directly, our findings suggest that consistent aerobic 

exercise may reduce hyperperfusion (in MCI) by normalizing ATT variability. While the 

mechanisms remain unclear, prior research indicates that exercise decreases Aβ 
deposition[80], and stimulates new cerebrovascular growth[33], which would help normalize 

blood flow and oxygen availability[19]. Additional analyses revealed no significant group-

by-time interaction or main effect of time for blood pressure (measured in the scanner 

immediately before each scan). Moreover, we found no significant associations between 

systolic/diastolic blood pressure changes and within-group CBF changes over time, further 

indicating that the exercise-induced alterations in cerebral perfusion were likely unrelated to 

changes in blood pressure.

We further propose that our previous findings of increased cortical thickness and functional 

connectivity within the DMN, as well as reduced activation during memory retrieval, may 

implicate these effects of exercise training on cerebral perfusion in MCI participants. 

Supporting this proposition, seminal research in animal models suggests exercise training 

improves brain function through a series of stepwise processes, such that exercise-altered 

cerebral blood volume (CBV) triggers increases in neuro- and angiogenesis and leads to an 

expansion of the cerebral microvasculature[33,81]. In humans, exercise interventions in 

cognitively normal older adults have demonstrated analogous improvements in 

cerebrovascular function, which are often accompanied by improvements in memory and 

executive control[29,31,82].

“The Scaffolding Theory of Aging and Cognition (STAC-r),” originally proposed in 2009, 

and revised in 2014, may partially explain the patterns of cerebral perfusion observed in this 

study[83]. While STAC-r does not specifically address changes in CBF, it does propose a 

plausible relationship between neural resource depletion (e.g., vascular damage, NFT, and 

Aβ deposition) and compensatory scaffolding (prefrontal functional activation), which aligns 

well with the between-group CBF differences we identified in the L insula at baseline (MCI 

> CN). Moreover, STAC-r recognizes exercise as a neural resource enrichment that improves 

brain function directly (e.g., exercise-altered cortical thickness, functional connectivity, 

synaptogenesis, etc.) and indirectly by facilitating complementary neuronal networks. 

Increased CBF in the R ACC among CN may reflect such exercise-induced neural resource 

enrichment, providing alternative pathways to circumvent the toxic pathology (NFT, Aβ, 

neuroinflammation) that likely precedes cognitive impairment.

Strengths and Limitations

The present study makes several valuable contributions to the existing literature. We 

examined older adults with normal cognition and MCI, which have been underrepresented in 

the exercise-related neuroimaging literature. We used perfusion-weighted MRI, which is a 

non-invasive and cost-effective method, accessible on most MRI systems, but seldom 

utilized. Our study included a battery of neuropsychological assessments, which allowed us 

to explore potential links between CBF changes and changes in cognition. While our sample 

was small and homogenous (n = 32, women = 72%, education = 16.1 ± 2.6 years), it was 

similar in size and composition to other investigations of this nature. And although we likely 
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lacked the power to detect significant interactions, our within- group CBF findings suggest 

that exercise training may mitigate perfusion abnormalities resulting from AD pathology.

Constrained by contemporary imaging methods, the scanning protocol used in this study 

limited our FOV to the superior half of the brain, precluding the analysis of subcortical brain 

regions such as the hippocampus. Although our perfusion-weighted images were partial 

volume corrected and visually inspected for quality assurance, ASL voxels are large and 

inherently susceptible to partial volume effects. Finally, the lack of a non-exercise control 

group is a limitation of this study, warranting some caution in the interpretation of effects. 

Although we cannot rule out other interpretations of the findings, pretest-posttest designs are 

commonly used to examine intervention effects over time and it is unlikely the passage of 

time or other nonspecific intervention effects would be responsible[74]. Although it is 

possible that improvement in verbal fluency performance could reflect a practice effect, we 

computed residualized change scores for our analyses, which adjusts for baseline 

performance, practice effects, and regression to the mean.

Summary and Future Directions

In the present study, aerobic exercise training mitigated baseline CBF differences between 

CN and MCI participants. Furthermore, exercise-induced decreases in CBF were linked to 

improved verbal fluency among those with MCI. To better understand how aerobic exercise 

might be used to prevent or postpone the onset of dementia, future intervention studies 

should evaluate other known risk factors, including poor sleep quality and sleep disordered 

breathing, and must target individuals with a known family history of AD. Moreover, to 

more appropriately measure CBF and other important parameters of cerebrovascular 

physiology (e.g., ATT and CBV), future ASL studies should include longer and multiple 

post label delay times and whole brain coverage. While participants in the current study 

showed fitness and cognitive improvements after just 12 weeks, we do not know how long 

these changes will last, or how much training might be necessary to sustain them. Therefore, 

high-powered, randomized controlled trials are necessary to further evaluate the potential 

modifying effects of CBF (and other indices of brain function) on the relationship between 

exercise training and cognition.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The box encompassing the brain maps above represents the field of view (FOV) that was 

used for image acquisition during this study. The green colored area illustrates the 

standardized gray matter mask within which the voxel-wise analysis was restricted. The 

brain mask was generated using AFNI’s 3dMerge program and included only those voxels in 

which ≥ 95% of the study sample had data. Data from voxels not meeting this threshold 

were excluded from the group analyses.
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Figure 2. 
Bold p-value indicates a significant between-group difference, family wise error corrected p 
< 0.05. (A) Brain maps and corresponding strip plots showing significant difference at 

baseline (CN < MCI) in the left insula (the location of peak difference). (B) Demonstrates 

the comparison after the exercise intervention (CN = MCI). The baseline difference (shown 

in red) spans several brain regions including the left insula (BA 46), putamen (BA 25), 

inferior frontal gyrus (BA 47), and medial frontal gyrus (BA 10). There was no significant 

between-group difference in the left insula, or any other brain region, after the exercise 

intervention.
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Figure 3. 
Bold p-values indicate significant within-group changes over time, family-wise error 

corrected p < 0.05. (A) Brain map and corresponding strip plot show significant changes 

over time for CN. Red area indicates significantly increased CBF in the right anterior 

cingulate cortex (location of peak change), but also spans the left/right anterior cingulate 

cortices and the left/right superior medial gyri (BA 10). (B) Shows significant changes over 

time for MCI, with the blue area indicating decreased CBF in the left anterior cingulate 

cortex (location of peak change). (C) Also shows significant changes over time for MCI, 
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with the blue area indicating decreased CBF in the right inferior frontal gyrus (location of 

peak change). Significant CBF changes in those with MCI span several brain regions 

including the left/right anterior cingulate cortex (BA 24), left/right middle cingulate cortex 

(BA 32), right inferior frontal gyrus (BA 47), right insula (BA 46), and right putamen (BA 

25).
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Figure 4. 
After adjustment for age and education, scatterplots depict the partial correlations between 

residualized change in COWAT performance and residualized change in CBF among 

individuals diagnosed with MCI. Improved COWAT performance was associated with (A) 

decreased left insula CBF and (B) decreased left ACC CBF among individuals with MCI. 

No such associations were found among CN individuals.
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